1. LAND RECLAMATION / DEVELOPMENT BY WAY OF CONSTRUCTION OF DRAINAGE CHANNEL

Drainage channels are required to safe disposal of excess runoff water from the water logged area in agricultural field. This process of disposal of excess water develops the agricultural land and increase the land productivity also.

Let us consider for a standard case, where average /optimum depth of water to be drain out by a channel is 0.75 m from an area of 100 ha in clay soil having draiage co-efficient of 5 cm (average)

Also considering a channel gradient of 0.4%. The total quantity of water to be drain in 24 hrs . i.e. discharge through the channel,

$$
\begin{aligned}
\mathrm{Q} & =\frac{100 \times 10000 \times 5}{100 \times 60 \times 60 \times 24} \mathrm{~m}^{3} / \mathrm{s} \\
& =0.58 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Considering S/slope $=1: 1$ (Clay soil)
$\mathrm{b}=2 \mathrm{~d} \tan \varnothing / 2=2 \times 0.75 \times \tan 45^{\circ} / 2=0.62 \mathrm{~m}$
Top width $\quad=b+2 \mathrm{~d}$

$$
\begin{aligned}
& =0.62+2 \times 0.75 \\
& =2.12 \mathrm{~m}
\end{aligned}
$$

Cross sectional area, $\quad a=\frac{(0.62+2.12)}{2} \times 0.72 \mathrm{~m}^{2}$

$$
\begin{aligned}
& =1.02 \mathrm{~m}^{2} \\
\text { Say } & =1.00 \mathrm{~m}^{2}
\end{aligned}
$$

Length of side, $\quad s \quad=\sqrt{(0.75)^{2}+(0.75)^{2}}$

$$
=1.06 \mathrm{~m}
$$

Wetted perimeter, $\quad \mathrm{p}=2 \times \mathrm{s}+\mathrm{b}$

$$
=2 \times 1.06+0.62
$$

$$
=2.74 \mathrm{~m}
$$

Hydralic Radious, $\quad \mathrm{R}=\frac{\mathrm{a}}{\mathrm{P}}=\frac{1}{2.74} \quad=0.36 \mathrm{~m}$
Velocity through the channel by mennings formula

$$
\begin{aligned}
\mathrm{V} & =\frac{1 \mathrm{R}^{2} / 3 \mathrm{~S}^{1 / 2}}{\mathrm{n}} \\
& =\frac{1 \mathrm{x}}{0.04}(0.36)^{2} / 3 \times(0.004)^{1 / 2} \\
& =0.81 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Permissible velocity in clay soil is $1.2 \mathrm{~m} / \mathrm{s}$. Therefore, the calculated velocity of 0.81 m / s is safe against scouring.

Now, discharge through the design ditch,

$$
\begin{aligned}
\mathrm{Q} & =1.00 \mathrm{~m}^{2} \times 0.81 \mathrm{~m} / \mathrm{s} \\
& =0.81 \mathrm{~m} / \mathrm{s} \quad \text { which is greater than required discharge of } 0.58 \mathrm{~m}^{3} / \mathrm{s} .
\end{aligned}
$$

2. Land Development work by Construction of Earthen Embankment with Core Walling (concrete) /without Core Walling.

Generally land development works in the department is taken up to prevent entry of flood water to the agricultural field and silt along with to prevent erosion of agricultural land adjustance to the river bank or to guide surface runoff to a safe disposal point. Uniform distribution of water in cultivable land is also another purpose of it. To meet up the above purposes and for the point of conservation of soil and water and the stability of the embankment, core wall should be introduced, which is a centrally provided fairly impervious wall in the embankment, aspecially in the meandering portion of the river. It checks the flow of water in the section of the dam. Generally the core wall extends from the ground level up to High Flood Level (HFL). The core wall may be constructed of various materials, such as puddle clay, masonry or concrete.

Now, for a general condition considering height
of water up to HFL $=0.85 \mathrm{~m}$
Freeboard $=\underline{15 \times} 10.85 \mathrm{~m} \quad=0.13 \mathrm{~m}$
Total height $=0.98 \mathrm{~m} \quad$ Say $=1.00 \mathrm{~m}$
(Considering approx. 5\% consolidation)
Top width $=\frac{\mathrm{H}}{5}+1.5=\frac{1.00}{5}+1.5=1.70 \mathrm{~m}$
Considering side slope of $1: 1$
Bottom width $=3.70 \mathrm{~m}$
Therefore, cross section area $\left.\quad=\frac{(1.70+3.70}{2}\right) \mathrm{m} \times 1.00 \mathrm{~m}=2.70 \mathrm{~m}^{2}$
Considering core trench of bottom width $\quad=0.075 \mathrm{~m}$
Top width $\quad=0.10 \mathrm{~m}$
Depth $\quad=0.20 \mathrm{~m}$
Thus, top width of core wall $\quad=0.075 \mathrm{~m}$
With height up to HFL i.e.
$=1.00 \mathrm{~m}$

3. Contour Bunding (with core embankment of hard soil) :

The determination of cross-section of the bund base on selection of the vertical or horizontal intenval is the prime criteria of designing of a contour bund. In the absence of better information, the spacing of bunds may be based on standard recommendations as per the suitability of local condition.

The height of bund should provide sufficient storage above the bund to handle the exected runoff. The proper capacity of bund for an area can be obtained by estimating the maximum amount of runoff to be handled by the bund.

In our condition for a general field slope of 0 to 5%, it is usual practice to provide 30 cm design depth of impounding, 30 cm depth of flow over the outlet and 20 cm as free board, which makes the overall height of 80 cm with top width of 0.50 and bottom width of 2.1 m , side slope work out to $1: 1$. The cross section works out to be 1.00 Sqm . approximately.

Now, for a critical length of 100 m per ha of area, the volume of earth work works to be $100 \mathrm{~m} 3 /$ ha

4. Boulder Spur :

Let as considered a standard with of stream optimum
width as per as the Soil Conseravation works concern) $\quad=30.00 \mathrm{~m}$
Depth of the stream
$=3.00 \mathrm{~m}$
Therefore, length of the Spur $\quad=1 / 3$ of the stream width

$$
=1 / 3 \times 30.00 \mathrm{~m} \quad=10.00 \mathrm{~m}
$$

Height of the Spur $=70 \%$ of depth of the Spur $\frac{70}{100} \times 3.0 \mathrm{~m}=2.10 \mathrm{~m}$
Considering base height of the Spur $\quad=0.90 \mathrm{~m}$
(Below ground level)
Total height of the Spur $=2.10 \mathrm{~m}+0.90 \mathrm{~m} \quad=3.00 \mathrm{~m}$
Top width of the Spur $=70 \%$ of the height of Spur
$=70 \times 2.10 \mathrm{~m}=1.47 \mathrm{~m} \quad$ Say $=1.50 \mathrm{~m}$
100
Therefore, bottom width (at $0.5: 1$ slope) $=(1.05+1.50+1.05) \mathrm{m}$ $=3.60 \mathrm{~m}$
Therefore base width $=4.60 \mathrm{~m}(0.50 \mathrm{~m}$ in each side)

Model Detail Estimate for Boulder Spur (As per APWD Schedule 2007-08)

Length of Spur	$=10.00 \mathrm{~m}$
Height of Spur	$=2.10 \mathrm{~m}$
(above bed level)	
Depth of foundation	$=0.90 \mathrm{~m}$

Item No. 1. Site clearance L.S... Rs. 500.00
Item No. 2. Earth work in foundation bed portion
Bed portion $=4.60 \mathrm{~m} \times 0.90 \mathrm{~m} \times 10.0 \mathrm{~m}$
$=41.40 \mathrm{~m}^{3}$
@ Rs. $47.00 / \mathrm{m}^{3}$.. Rs. 1,946.00
Item No. 3. Cost of boulder (As per schedule rate)
Providing \& laying of boulder etc.

1. For base $=0.90 \mathrm{~m} \times 4.60 \mathrm{~m} \times 8.0 \mathrm{~m}=33.12 \mathrm{~m}^{3}$
2. For Spur, with nose
(i) $\left.\quad 2.10 \mathrm{~m} \times \frac{(1.50+3.60}{2}\right) \times 8.00 \mathrm{~m}=42.84 \mathrm{~m}^{3}$
(ii) $\quad(\underline{3.60}+1.80) \mathrm{mx}(\underline{2.10}+1.00) \mathrm{m} \times 2.0 \mathrm{~m}=8.37 \mathrm{~m}^{3}$
3. Nose cushion $=2.00 \mathrm{~m} \times 2.00 \mathrm{~m} \frac{\mathrm{x} 4.60 \mathrm{~m}=18.40 \mathrm{~m}^{3}}{\text { Total }=102.73 \mathrm{~m}^{3}}$
(a) Rs. 1,029.00/m3. \qquad
Item No.4. Supplying, fitting, fixing with $\mathrm{H} /$ wire net
Quantity :
4. For base
(i) $0.90 \mathrm{~m} \times 8.00 \mathrm{~m} \times 2$ sides $\quad=14.40 \mathrm{~m}^{2}$
(ii) $4.60 \mathrm{~m} \times 8.00 \mathrm{~m} \times 2$ sides $\quad=73.60 \mathrm{~m}^{2}$
(iii) $0.90 \mathrm{~m} \times 4.60 \mathrm{~m} \times 2$ sides $\quad=8.28 \mathrm{~m}^{2}$
5. Spur
(i) $2.96 \mathrm{~m} \times 8.00 \mathrm{~m} \times 2$ sides $\quad=47.36 \mathrm{~m}^{2}$
(ii) $1.50 \mathrm{~m} \times 8.00 \mathrm{~m} \times 1$ side $\quad=12.00 \mathrm{~m}^{2}$
(iii) $\quad \frac{(1.50+3.60}{2} \times 2.10 \mathrm{~m} \times 2$ sides $=10.71 \mathrm{~m}^{2}$
6. Nose
(i) $(\underline{3.60+1.80}) \times 2.0 \mathrm{~m} \times 1 \mathrm{No} \quad=5.40 \mathrm{~m}^{2}$
(ii) $1.80 \mathrm{~m} \times 1.00 \mathrm{~m} \times 1 \mathrm{No} \quad=1.80 \mathrm{~m}^{2}$
(iii) $3.60 \mathrm{~m} \times 2.10 \mathrm{~m} \times 1$ No $\quad=7.56 \mathrm{~m}^{2}$
(iv) $\frac{(2.53+1.41)}{2} \times 2.0 \mathrm{~m} \times 2$ sides $\quad=7.88 \mathrm{~m}^{2}$
(v) $\quad 2.28 \mathrm{~m} \times 3.60 \mathrm{~m} \times 1 \mathrm{No} \quad=8.20 \mathrm{~m}^{2}$
7. Nose Cushion :
(i) $2.0 \mathrm{~m} \times 4.60 \mathrm{~m} \times 2$ sides $\quad=18.40 \mathrm{~m}^{2}$
(ii) $4.60 \mathrm{~m} \times 2.00 \mathrm{~m} \times 2$ sides $\quad=18.40 \mathrm{~m}^{2}$
(iii) $\quad 2.0 \mathrm{~m} \times 2.0 \mathrm{~m} \times 2$ sides $\quad=8.00 \mathrm{~m}^{2}$

Total $=241.99 \mathrm{~m}^{2}$
Adding 10\% extra for lapping $\quad=(241.99+24.199) \mathrm{m}^{2}$

$$
=266.189 \mathrm{~m}^{2}
$$

Rate Analysis of Hexagonal wire :

Rate for 1 (one) roll of $15.24 \mathrm{rm} \times 3.66 \mathrm{rm}$ size of Hexagonal wire netting made of 8 SWG triply twisted 152 mm mesh is Rs. 6350/- (average rate of ASIDC for all district w.e.f. 03.07.2008).

Adding 8\% VAT, Total = Rs. $6350.00+$ Rs. $508.00=6858.00$
Therefroe, rate per Sqm. $\frac{=\text { Rs. } 6858.00}{15.24 \mathrm{rm} \times 3.66 \mathrm{rm}} \quad=$ Rs. $122.95 / \mathrm{m}^{2}$

$$
15.24 \mathrm{rm} \times 3.66 \mathrm{rm}
$$

Carring cost @ Rs. 500/- roll to work site

$$
\frac{=\text { Rs. } 500.00}{15.24 \times 3.66 \mathrm{~m}^{2}} \frac{=\text { Rs. } 8.96 / \mathrm{m}^{2}}{=\text { Rs. } 131.91 \mathrm{~m}^{2}}
$$

@ Rs. 131.91/m². Rs. $35,112.00$

Item No. 5. Fitting, Fixing of H/wire net for the spur, nose,cushion and base.
L.S. $=3$ Dls @ Rs. 97.00/D1........................... Rs. 291.00

1 Dl as black smith .. Rs. 150.00

Item No. 6. Planting of soil conservation species in between spurs, area $=60 \mathrm{~m} \times 3.00 \mathrm{~m}=180.00 \mathrm{~m} 2$
@ Rs. 5.00/m2... Rs. 900.00
Total Rs. 1,44,608.00

Now considering straight reach where specing between the spurs varies 4 to 6 times the projected length of the spur, the average length of spur that can project stream bank is $=\left(\frac{4+6}{2}\right) \times 10 \mathrm{~m}=50.00 \mathrm{~m}$

Therefore, cost of spur per unit stream length is $\quad=$ Rs. $\underline{1,44,608.00}$
= Rs. 2892.16
Say = Rs. 2,900.00/m length

5. Boulder Pitching with Rivetment :

Depth of the stream $\quad=3.00 \mathrm{~m}$
Therefore bank slope length $\quad=$ (at 45° optimum slope of pitching)
Therefore pitching length $\quad=\sqrt{3^{2}+3^{2}}$
$=\sqrt{ } 18=4.24$ Say $=4.25 \mathrm{~m}$
Pitching thickness $=45 \mathrm{~cm}$
Considering the Rivetment dimension $=1.00 \mathrm{~m} \times 1.00 \mathrm{~m}$

Model Estimate for Boulder Pitching with Rivetment :

(As per APWD Schedule (2007-08)
(Unit per RM of River Bank)
Item No. 1. Earth work in bank easing, volume
$=1 / 2 \times 3.00 \times 3.00 \times 1.00 \mathrm{~m}^{3}=4.50 \mathrm{~m}^{3}$

Item No. 2. Providing \& laying of boulder etc
(i) For pitching $=4.25 \mathrm{~m} \times 0.45 \mathrm{~m} \times 1.00 \mathrm{~m} \quad=1.912 \mathrm{~m}^{3}$
(ii) For Rivetment $=1.00 \mathrm{~m} \times 1.00 \mathrm{~m} \times 1.00 \mathrm{~m} \frac{=1.00 \mathrm{~m}^{3}}{=2.912 \mathrm{~m}^{3}}$
@ Rs. 1029.00/m³.
Rs. 2,996.00
Item No. 3. Supplying, fitting, fixing with H/wire net
Quantity for pitching,
$=4.25 \mathrm{~m} \times 1.00 \mathrm{~m} \times 2$ sides $\quad=8.50 \mathrm{~m}^{2}$
$=4.25 \mathrm{~m} \times 0.45 \mathrm{~m} \times 2$ sides $\quad=3.82 \mathrm{~m}^{2}$
$=0.45 \mathrm{~m} \times 1.00 \mathrm{~m} \times 2$ sides $\quad=0.90 \mathrm{~m}^{2}$
For Rivetment,
$=1.00 \mathrm{~m} \times 1.00 \mathrm{~m} \times 2$ sides $\quad=2.00 \mathrm{~m}^{2}$
$=1.00 \mathrm{~m} \times 1.00 \mathrm{~m} \times 2$ sides $\quad=2.00 \mathrm{~m}^{2}$
$=1.00 \mathrm{~m} \times 1.00 \mathrm{~m} \times 2$ sides $\quad=2.00 \mathrm{~m}^{2}$

$$
\begin{array}{ll}
\text { Adding } 10 \% \text { for lapping }=19.22 \mathrm{~m}^{2} \\
& =19.22 \mathrm{~m}^{2} \times 1.922 \mathrm{~m}^{2} \\
& =21.142 \mathrm{~m}^{2}
\end{array}
$$

@ Rs. 132.91/m² (Analysis as in boulder spur)... Rs. 2,810.00
Item No.4. Fitting, fixing of $\mathrm{H} /$ wire net for the revetment and pitching. Total = 1 Dl @ Rs. 97.00/D1. \qquad Rs. 97.00
1 Dl as black smith @ Rs. 150.00 Rs. 150.00
Rs. 247.00
Total Rs. 24.265 .00
Say Rs. 6,250.00

6. Model Design and Estimate for a Water Distribution Channel (For a critical length of $\mathbf{1 2 5 m}$ per hectare of area)

Design :

Considering Principal crop as paddy water requirement $=120 \mathrm{~cm}$
Consider this irrigation required is 45 days. i.e. irrigation required in 24 hrs .

$$
\frac{=120}{45}=2.66 \mathrm{~cm} / \text { day }
$$

Discharge required for command area of 1.0 hectare,

$$
\mathrm{Q}=\frac{1 \times 10,000 \times 2.66}{100 \times 60 \times 60 \times 24} \quad=0.003 \mathrm{~m}^{3} / \mathrm{S}
$$

Considering depth of the channel $=0.60 \mathrm{~m}$ and side slope $=1: 1$ (Sandy clay soil) and field gradent of 1.0 m in $2500 \mathrm{~m}(0-3 \%$ slope area)

$$
\begin{array}{ll}
\mathrm{b}=2 \mathrm{~d} \tan \varnothing / 2 & =2 \times 0.60 \times \tan 45 / 2=0.50 \mathrm{~m} \\
\text { Top width } & =\mathrm{b}+2 \mathrm{~d} \\
& =0.50+2 \times 0.60 \\
& =1.70 \mathrm{~m}
\end{array}
$$

Cross section area, $\begin{aligned} a & =\left(\frac{0.50+1.70}{2} \times 0.60 \mathrm{~m}^{2}\right. \\ & =0.66 \mathrm{~m}^{2}\end{aligned}$
Length of side, $s=\sqrt{(0.60)^{2}+(0.60)^{2}}$

$$
=0.84 \mathrm{~m}
$$

Wetted perimeter, $\mathrm{p} \quad=2 \times \mathrm{s}+\mathrm{b}$

$$
\begin{aligned}
& =2 \times 0.84+0.50 \\
& =2.18 \mathrm{~m}
\end{aligned}
$$

Hydralic Radious, $\mathrm{R}=\frac{\mathrm{a}}{\mathrm{P}}=\frac{0.66}{2.18}=0.30$
Velocity through the channel,

$$
\begin{aligned}
\mathrm{V} \quad & =1 / 2 \mathrm{R}^{2} / 3 \mathrm{~S}^{1 / 2} \\
& =1 \times(0.30)^{2 / 3} \times(1 \quad 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& 0.04 \\
= & 0.22 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

i.e. within permissible velocity in clay soil against scouring. Now, discharge through the design channel.

$$
\begin{aligned}
\mathrm{Q} & =0.66 \mathrm{~m}^{2} \times 0.22 \mathrm{~m} / \mathrm{s} \\
& =0.145 \mathrm{~m}^{3} / \mathrm{s} \quad>\text { than required discharge }
\end{aligned}
$$

7. GULLY CONTROL / DROP SPILLWAY

Re-presentative Field Data :

1. Drainage area of Micro Watershed

$$
\begin{aligned}
& =70 \mathrm{ha} \\
& =2.00 \mathrm{~m} \\
& =0-3 \%
\end{aligned}
$$

2. Drop / Average depth of the Gully/Juri
3. Agricultural land with average land slope
4. Maximum length of travel $\mathrm{L}=1100 \mathrm{~m}$ and
difference of elevation at outlet from origin $\quad=7.00 \mathrm{~m}$
Using Rational Formula,
Peak Discharge, Q = CIA.
Intensity of Rainfall,

$$
\begin{equation*}
\frac{\mathrm{I}=\mathrm{KTa}^{\mathrm{t}}}{(\mathrm{t}+\mathrm{b})^{\mathrm{n}}} \mathrm{~cm} / \mathrm{hr} . \tag{B}
\end{equation*}
$$

\qquad
Where, $\mathrm{T}=$ Recurrance interval
$\mathrm{t}=$ time of concentration in hrs; k,a,b,n are parameters, may be considered from Intensity-return period relationship table for 30 years of recurrence interval.
$\mathrm{k}=7.60$
$\mathrm{a} \quad=0.1557$
b $\quad=0.55$
$\mathrm{n} \quad=0.9401$
Time of concentration
$\mathrm{t}=0.01947 \mathrm{x}(\mathrm{K})^{0.77}$ minutes, where
$\mathrm{k} \quad=\frac{\sqrt{\mathrm{L}^{3}}}{\mathrm{H}}=\sqrt{\left(\frac{(1100}{7}\right)^{3}}=13789$
Therefore, $\mathrm{t}=0.01947 \mathrm{x}(13789)^{0.77}$

$$
\begin{aligned}
& =30.0 \text { minutes } \\
& =\frac{30}{60} \mathrm{Hr} \quad=1 / 2 \mathrm{hr} .
\end{aligned}
$$

Thus, $I \quad=7.60 \times(30)^{0.1557}$
$(4 / 2+0.55){ }^{0.9401}$
$=12.40 \mathrm{~cm} / \mathrm{hr} \quad=124 \mathrm{~mm} / \mathrm{hr}$.
Therefore, $\mathrm{Q}=\frac{\text { CIA }}{360}, \quad \mathrm{C}=0.50$ (runoff co-efficient)

$$
=\frac{0.50 \times 124 \times 70}{360} \mathrm{~m}^{3} / \mathrm{s}
$$

$=12.05 \mathrm{~m}^{3} / \mathrm{s}$
Adding 20% for peak discharge,

Q max

$$
\begin{aligned}
& =12.05 \mathrm{~m}^{3} / \mathrm{s}+12.05 \times \frac{20}{100} \mathrm{~m}^{3} / \mathrm{s} \\
& =14.46 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Model Design of Water Harvesting Structure cum Water Distribution Network

 (Uttar Amloga Area, Balipara Development Block, Sonitpur District)
(A) Re-prentative Field Data :

1. Drainage area of watershed

$$
=70 \mathrm{ha}
$$

2. Average width of the juri
$=7.0 \mathrm{~m}$
3. Average depth of the juri
$=2.0 \mathrm{~m}$
4. Agricultural land with average land slope
= 0-3\%
5. Surface velocity of the gully /juri water

(B) Hydrological Design :

Cross section area of the gully /juri, $\mathrm{A}=7.0 \times 2.0 \mathrm{~m}^{2}$

$$
=14.00 \mathrm{~m}^{2}
$$

Mean velocity $\quad=1.0 \times 0.86 \mathrm{~m} / \mathrm{s}$ (Average velocity $=0.86 \mathrm{~m} / \mathrm{s}$)

$$
=0.86 \mathrm{~m} / \mathrm{s}
$$

Therefore, discharge, $\mathrm{Q}=\mathrm{Ax} \mathrm{V} \mathrm{m}^{3} / \mathrm{s}$

$$
=14 \times 0.86 \mathrm{~m}^{3} / \mathrm{s}
$$

$$
=12.04 \mathrm{~m}^{3} / \mathrm{s}
$$

Increasing 20% for peak flood season, $Q \max =12.04 \mathrm{~m}^{3} / \mathrm{s}+12.04 \times \frac{20}{100} \mathrm{~m}^{3} / \mathrm{s}$

$$
=14.40 \mathrm{~m}^{3} / \mathrm{s}
$$

(C) Hydranlic Design :

Let us considered,
F $\quad=$ Net drop (drop from crest to top of transverse sill)
$=2.0 \mathrm{~m}$
$\mathrm{h} \quad=$ Depth of wire (including freeboard)
$=1.20 \mathrm{~m}$
Therefore, $h / F=\frac{1.20}{2}=0.60$
i.e. within 0.50 to 0.75

Now, $\mathrm{L}=$ Crest length $\quad=\mathrm{Q} \frac{(1.10+0.01 \mathrm{~F})}{1.71 \mathrm{~h}^{3} / 2}$

$$
=14.45 \frac{(1.10+0.01 \times 2.0)}{1.71 \times(1.20)^{3} / 2}
$$

$$
=7.20 \mathrm{~m} \text {, i.e. } \mathrm{L}=7.20 \mathrm{~m}
$$

(D) Structural Design :

The dimensions of the components of the structure are determined as below.
(i) Minimum head wall extension,
$\mathrm{E} \quad=(3 \mathrm{~h}+0.60)$ or 1.50 F , whichever is greater
$=(3 \times 1.20+0.60) \mathrm{m}$ or $1.50 \times 2.0 \mathrm{~m}$
$=4.20 \mathrm{~m}$ or 3.00 m
Adopt, $\mathrm{E}=4.00 \mathrm{~m}$
(ii) Length of apron or basin, $\mathrm{L}_{\mathrm{B}} \quad=\mathrm{F}(2.28 \mathrm{~h} / \mathrm{F}+0.54) \mathrm{m}$

$$
=2\left(2.28 \times \frac{1.20}{2}+0.54\right) \mathrm{m}
$$

$$
=3.816 \mathrm{~m}
$$

Adopt $\mathrm{L}_{\mathrm{B}}=4.00 \mathrm{~m}$
(iii) Height of Transverse sill, $\mathrm{Ts}=\mathrm{h} / 3=\frac{1.20}{3} \mathrm{~m} \quad=0.40 \mathrm{~m}$
(iv) Height of Longitudinal sill, $\mathrm{Ls}=\mathrm{h} / 4=\underline{1.20} \mathrm{~m}=0.30 \mathrm{~m}$ 4
(v) Height of wing wall and side wall at junction, $J=2 h$ or $\left(F+h+T s-\left(L_{B}+0.10\right) / 2\right)$ Whichever is greater
$=2 \times 1.20$ or $(2+1.20+0.40-(4.00+0.10) / 2)$
$=2.40 \mathrm{~m}$ or 1.55 m Adopt, $\mathrm{J}=2.40 \mathrm{~m}$
(vi) Slopping portion length of side wall, $\mathrm{M}=2(\mathrm{~F}+1.33 \mathrm{~h}-\mathrm{J})$

$$
=2(2.0+1.33 \times 1.20-2.40)
$$

$=2.392 \mathrm{~m}$, Adopt, $\mathrm{M}=2.50 \mathrm{~m}$
(vii) Straight portion length of side wall, $K=L_{B}-M$

$$
=(4.00-2.50) \mathrm{m}=1.50 \mathrm{~m}
$$

(viii) Length of wing wall, W $=2.83(\mathrm{~J}-\mathrm{Ts}-0.30)$

$$
=2.83(2-0.40-0.30) \mathrm{m}
$$

$$
=3.679 \mathrm{~m}, \text { Adopt, } \mathrm{E}=4.00 \mathrm{~m}
$$

(ix) Free end height of wing wall, $\mathrm{W}_{\mathrm{F}}=(\mathrm{Ts}+0.30) \mathrm{m}$

$$
\begin{aligned}
& =(0.40+0.30) \mathrm{m} \\
& =0.70 \mathrm{~m}
\end{aligned}
$$

(x) Depth of Toe wall \& cut off wall, d $\quad=1.50 \times \mathrm{NSD}$
$=1.50 \times 0.473 \times(\mathrm{Q} / 5)^{1 / 3}$
Q = discharge
$\mathrm{f}=$ silt factor
$=1.50 \times 0.473 \times\left(\frac{(14.45}{1.20}\right)^{1 / 3}$
$=1.612 \mathrm{~m}$ Adopt, $\mathrm{d}=1.65 \mathrm{~m}$

(E) Structural Details :

(i) All walls, i.e. head wall, H.W. Extension, side wall, wing wall, cutoff \& toe wall, transverse \& longitudinal sill, buttress etc are taken 30 cm thick.
(ii) Apron \& heal slab thickness is taken as 35 cm .
(iii) Re-inforcement in all walls and apron are taken as $12 \mathrm{~mm} \varnothing$ rods placed at $25 \mathrm{~cm} \mathrm{C} / \mathrm{C}$ and $16 \mathrm{~mm} \varnothing$ bar at buttress.
(iv) Total reinforcement approximately considered as 60 Kg per cubic meter of RCC work.

$\mathrm{L}=7.20 \mathrm{~m}$	$\mathrm{M}=2.50 \mathrm{~m}$
$\mathrm{E}=4.00 \mathrm{~m}$	$\mathrm{~K}=1.50 \mathrm{~m}$
$\mathrm{~L}_{\mathrm{B}}=4.00 \mathrm{~m}$	$\mathrm{~W}=4.00 \mathrm{~m}$
$\mathrm{Ts}=0.40 \mathrm{~m}$	$\mathrm{~W}_{\mathrm{F}}=0.70 \mathrm{~m}$
$\mathrm{Ls}=0.30 \mathrm{~m}$	$\mathrm{~d}=1.65 \mathrm{~m}$
$\mathrm{~J}=2.40 \mathrm{~m}$	

Details estimate for RCC Water Harvesting Structure / Drop Spillway

 (As per APWD (R \& B) Schedule of rates 2007-08)Item No. 1. Site preparation inclding debries, clearance, uprooting etc if any L.S.

Rs. 2,500.00
Item No. 2. Earth work in excavation in ordinary soi for 3.13/304 foundation of structures as per drawing and technical specification including de-watering of water etc.
(i) Adove GBL $\left.\quad=\frac{(17.5+15.5}{2}\right) \mathrm{m} \times 10.00 \mathrm{~m} \times 2.15 \mathrm{~m}$
$=354.75 \mathrm{~m}^{3}$
Deducting gully section volume, $=(-) 10.0 \mathrm{~m} \times 7.0 \mathrm{~m} \times 2.15 \mathrm{~m}$

$$
=(-) 150.50 \mathrm{~m}^{3}
$$

Total $=204.25 \mathrm{~m}^{3}$
(A) Manual means (depth up to 3.0m) (without dewatering) @ Rs. 99.00/m³.

Rs. 20,220.00
(ii) Below GBL
(i) H / W \& H/W extension, W / W \& Toe wall

$$
\begin{array}{ll}
& =2 \times\left(\frac{17.5+15.5}{2}\right) \mathrm{m} \times 1.50 \mathrm{~m} \times 2.25 \mathrm{~m}^{3} \\
& \\
& =111.38 \mathrm{~m}^{3} \\
\text { (ii) Apron, } \quad & =7.80 \times 0.95 \times 4.00 \mathrm{~m} 3 \\
& =29.64 \mathrm{~m}^{3} \\
& =141.02 \mathrm{~m}^{3}
\end{array}
$$

(A) Manual means (depth up to 3.0m) (with dewatering) @ Rs. 108.00/m³. Rs. 15,230.00

Item No. 3. Collection cost of stone chips machine broken materials for solling in $\mathrm{H} / \mathrm{W}, \mathrm{H} / \mathrm{W}$ extension, W/W, T/W etc and apron before RCC work.
(i) $\mathrm{H} / \mathrm{W} \& \mathrm{H} / \mathrm{W}$ extension, W / W \& Toe wall,

$$
\begin{aligned}
2 \times 15.20 \times 0.75 \times 0.20 & =4.56 \mathrm{~m}^{3} \\
\text { (ii) Apron }=7.80 \times 4.00 \times 0.20 & =6.24 \mathrm{~m}^{3} \\
& =10.80 \mathrm{~m}^{3}
\end{aligned}
$$

For 40mm chips, @ Rs. $451.00 / \mathrm{m}^{3}$....................
Rs. 4,871.00
Item No. 4. RCC work in sub structure complete as per
13.5 (A) drawing and technical specification and steel

1500,1700 shuttering form work.
\&2200 Volume of RCC works :
(a) Head wall \& cut-off wall $7.20 \mathrm{~m} \times 4.05 \mathrm{~m} \times 0.30 \mathrm{~m}=8.75 \mathrm{~m}^{3}$
(b) H/W extension $=2 \times 4.00 \mathrm{~m} \times 5.25 \mathrm{~m} \times 0.30 \mathrm{~m} \quad=12.60 \mathrm{~m}^{3}$
(c) Side wall $=2 \times 3.95 \mathrm{~m} \times 1.50 \mathrm{~m} \times 0.30 \mathrm{~m}$

$$
\left.+2 \times \frac{(3.95+2.75}{2}\right) \mathrm{m} \times 2.50 \mathrm{~m} \times 0.30 \mathrm{~m}=8.58 \mathrm{~m}^{3}
$$

(d) Apron $=7.20 \mathrm{~m} \times 4.00 \mathrm{~m} \times 0.35 \mathrm{~m} \quad=10.08 \mathrm{~m}^{3}$
(e) T. wall \& Transverse sill $=2.05 \mathrm{~m} \times 7.20 \mathrm{~m} \times 0.30 \mathrm{~m}=4.43 \mathrm{~m}^{3}$
(f) Wing wall $=2 \times(\underline{4.05+2.35}) \mathrm{m} \times 4.0 \mathrm{~m} \times 0.30 \mathrm{~m}=7.68 \mathrm{~m}^{3}$
(g) Butress $=1 \times\left(\frac{0.30+1.50}{2}\right) \mathrm{m} \times 2.40 \mathrm{~m} \times 0.30 \mathrm{~m}$

$$
=0.65 \mathrm{~m}^{3}
$$

(h) Sill beam $=1 \times 0.30 \mathrm{~m} \times 0.30 \mathrm{~m} \times 2.50 \mathrm{~m} \quad=0.23 \mathrm{~m}^{3}$
(i) Heal slab $=7.20 \mathrm{~m} \times 0.35 \mathrm{~m} \times 0.30 \mathrm{~m}=0.76 \mathrm{~m}^{3}$
(j) W/wall footings

$$
\left.2 \times \frac{(0.30+0.50+0.20}{3}\right) \mathrm{m} \times 4.0 \mathrm{~m} \times 0.30 \mathrm{~m}=0.80 \mathrm{~m}^{3}
$$

(k) H/W exten. footing $=2$ Nox3.70mx0.35mx0.30m $=0.78 \mathrm{~m} 3$ (back side)

Total $=55.34 \mathrm{~m}^{3}$
(F) RCC grade M- 20,
@ Rs. 4,591.00/m³................................
Rs. 2,54,066.00
Item No. 5. Supplying, fitting and fixing of reinforcement 13.6 in position including cost of cutting \& bending reinforcement as per drawing and technical specification.
Total volume of $\mathrm{RCC}=54.56 \mathrm{~m}^{3}$
M / s Rod required $=0.60 \mathrm{Qt} / \mathrm{m}^{3}$
(As per analysis enclosed)
i.e. 0.60×55.34 Qtls $=33.20$ Qtls. $=3.32 \mathrm{MT}$
@ Rs. 46,779.00/MT.
Rs. 1,55,306.00
Item No. 6. Supply of river gravel 6.00 m to 20 mm size including laying in position for type A filter of the spillway.
$\left.\frac{(0.50+1.50}{2}\right) \mathrm{m} \times 1.00 \mathrm{~m} \times 7.20 \mathrm{~m}=7.20 \mathrm{~m}^{3}$

Rs. 4,111.00
Item No. 7. Plastering with cement mortar (including cleaning surface etc) thickness of plaster $=12 \mathrm{~mm}$

Area :

$\begin{array}{rlr}\text { (i) } \mathrm{H} / \text { Wall }=2 \times 7.20 \mathrm{~m} \times 2.40 \mathrm{~m} & =34.56 \mathrm{~m}^{2} \\ 7.20 \mathrm{~m} \times 0.30 \mathrm{~m} & =2.16 \mathrm{~m}^{2} \\ \text { (ii) } \mathrm{H} / \mathrm{W}=2 \times 2 \times 4.0 \mathrm{~m} \times 1.50 \mathrm{~m} & =24.00 \mathrm{~m}^{2} \\ 2 \times 4.0 \mathrm{~m} \times 0.30 \mathrm{~m} & =2.40 \mathrm{~m}^{2} \\ \text { (iii) } \mathrm{S} / \text { wall }=2 \times 3.60 \mathrm{~m} \times 1.50 \mathrm{~m} & =10.80 \mathrm{~m}^{2} \\ 2 \times\left(\frac{3.60+2.40}{2}\right) \mathrm{m} \times 2.50 \mathrm{~m} & =15.00 \mathrm{~m}^{2} \\ 2 \times 1.20 \mathrm{~m} \times 1.50 \mathrm{~m} & =3.60 \mathrm{~m}^{2} \\ 2 \times\left(\frac{1.0+0.50}{2}\right) \mathrm{m} \times 2.50 \mathrm{~m} & =3.75 \mathrm{~m}^{2} \\ 2 \times 4.0 \mathrm{~m} \times 0.30 \mathrm{~m} & =2.40 \mathrm{~m}^{2} \\ \text { (iv) } \mathrm{W} / \text { wall }=2 \times 2 \times \frac{(2.4+0.7) \mathrm{m} \times 4.0 \mathrm{~m}}{2} & =24.80 \mathrm{~m}^{2} \\ 2 \times 4.0 \mathrm{~m} \times 0.30 \mathrm{~m} & =2.40 \mathrm{~m}^{2}\end{array}$
(v) Transverse sill $=2 \times 0.40 \mathrm{~m} \times 7.20 \mathrm{~m}=5.76 \mathrm{~m}^{2}$
$1 \times 7.20 \mathrm{~m} \times 0.30 \mathrm{~m}=2.16 \mathrm{~m}^{2}$
(vi) Butress $=2 \times 2.40 \mathrm{mx}(\underline{0.30+1.50}) \mathrm{m}=4.32 \mathrm{~m}^{2}$
(vii) Sill beam $=3 \times 2.50 \mathrm{~m} \times 0.30 \frac{\mathrm{~m}}{\text { Total }}=\frac{140.36 \mathrm{~m}^{2}}{}$
@ Rs. 72.00/m²
Rs. $10,106.00$
Item No. 8. Earth work in local clay soil including necessary 17/28 dressing watering etc.

1. U / S of structure $=7.20 \mathrm{~m} \times \frac{(3.0 \mathrm{~m}+9.0 \mathrm{~m})}{2} \times 1.70 \mathrm{~m}$

$$
=73.44 \mathrm{~m}^{3}
$$

2. Around H/W extension $=2 \operatorname{Nos} \times\left(\frac{3.0 m+9.0 m}{2}\right) \times 4.0 m \times 2.0 m$

$$
=96.00 \mathrm{~m}^{3}
$$

3. Guide bund (1:1 slope)

$$
\begin{array}{r}
=2 \text { Nos } \times 100 \times\left(\frac{1.5 \mathrm{~m} \times 4.50 \mathrm{~m})}{2} \times 1.50 \mathrm{~m}\right. \\
\frac{r}{\text { Total }}=1069.00 \mathrm{~m}^{3}
\end{array}
$$

@ Rs. 69.00/m³
Rs. 73,791.00
Item No. 9. Furnishing and laying of the live sods of perennial turf for guide bund sides
2 Nos x 2 sides $\times 100 \mathrm{~m} \times 2.12 \mathrm{~m}=848.00 \mathrm{~m}^{2}$
@ Rs. 19.00/m²
Rs. $16,112.00$
Item No. 10. Collection, supplying and placing in position of man
15.4 size boulder including payment of forest royalty.

1. U/S side of structure
(a) $7.20 \mathrm{~m} \times 2.0 \mathrm{~m} \times 0.30 \mathrm{~m}=4.32 \mathrm{~m}^{3}$
(b) 2 sides $\times 4.50 \mathrm{~m} \times 2.0 \mathrm{~m} \times 0.30 \mathrm{~m}=5.40 \mathrm{~m}^{3}$
2. D/S side of structure
$\begin{gathered}(7.20+12.84) \\ 2\end{gathered} \mathrm{~m} \times 2.82 \mathrm{~m} \times 0.60 \mathrm{~m} \frac{=16.95 \mathrm{~m}^{3}}{\text { Total }=26.67 \mathrm{~m}^{3}}$
@ Rs. 1,029.00/m3... Rs. 27,443.00
Item No. 11. Construction of a temporary shed with kitchen size $8.50 \mathrm{~m} \times 3.50 \mathrm{~m}=29.75 \mathrm{~m}^{2}$
@ Rs. 534/m²... Rs. 15,887.00
Item No. 12. Errection of a tube well L.S.
Rs. 4,000.00

Item No. 13. Fitting, fixing of a signboard of permanent
Nature. L.S.. Rs. $3,500.00$
Total Rs. 6,07,143.00
Adding 1% contingency Rs. $6,071.00$
Grand Total Rs. 6,13,214.00
Say Rs. 6,13,000.00
Therefore, Cost/Sqm. of Head wall works
$=$ Rs. 6,13,000.00
$7.20 \mathrm{~m} \times 2.40 \mathrm{~m}$
$=$ Rs. 35,474.53 Say = Rs. 35,500.00
(Rupees thirty five thousand five hundred) only.

Approved by

(R.K. Doley)

Director
Soil Conservation,Department Assam,
Pannyagar Bhawan, Guwahati-05

Committee for Revision of Departmental Norms

Scutinized by

(J.C. Gogoi)

Chairman \& Joint Director of Soil Conservation, (Head Quarter) S.C. Directorate, Guwahati-05

(B.K. Bhattacharjya)

Member
\&
Divisional Soil Conservation
Officer (Engineering), Uzan Bazar, Guwahati-01
(P. Dutta)

Member
\&
Divisional Soil Conservation Officer, Hamren Soil Conservation Division, Hamren
(G. Kalita)

Member
\&
Soil Conservation Overseer O/O the Jt. DSC (RVP)

Guwahati-01

